Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Mol Microbiol ; 121(5): 1021-1038, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38527904

RESUMEN

Daptomycin is a last-line antibiotic commonly used to treat vancomycin-resistant Enterococci, but resistance evolves rapidly and further restricts already limited treatment options. While genetic determinants associated with clinical daptomycin resistance (DAPR) have been described, information on factors affecting the speed of DAPR acquisition is limited. The multiple peptide resistance factor (MprF), a phosphatidylglycerol-modifying enzyme involved in cationic antimicrobial resistance, is linked to DAPR in pathogens such as methicillin-resistant Staphylococcus aureus. Since Enterococcus faecalis encodes two paralogs of mprF and clinical DAPR mutations do not map to mprF, we hypothesized that functional redundancy between the paralogs prevents mprF-mediated resistance and masks other evolutionary pathways to DAPR. Here, we performed in vitro evolution to DAPR in mprF mutant background. We discovered that the absence of mprF results in slowed DAPR evolution and is associated with inactivating mutations in ftsH, resulting in the depletion of the chaperone repressor HrcA. We also report that ftsH is essential in the parental, but not in the ΔmprF, strain where FtsH depletion results in growth impairment in the parental strain, a phenotype associated with reduced extracellular acidification and reduced ability for metabolic reduction. This presents FtsH and HrcA as enticing targets for developing anti-resistance strategies.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Daptomicina , Enterococcus faecalis , Pruebas de Sensibilidad Microbiana , Enterococcus faecalis/genética , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/metabolismo , Enterococcus faecalis/enzimología , Daptomicina/farmacología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Antibacterianos/farmacología , Mutación , Farmacorresistencia Bacteriana/genética , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/metabolismo
2.
Dev Biol ; 510: 50-65, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521499

RESUMEN

Bilaterian animals have evolved complex sensory organs comprised of distinct cell types that function coordinately to sense the environment. Each sensory unit has a defined architecture built from component cell types, including sensory cells, non-sensory support cells, and dedicated sensory neurons. Whether this characteristic cellular composition is present in the sensory organs of non-bilaterian animals is unknown. Here, we interrogate the cell type composition and gene regulatory networks controlling development of the larval apical sensory organ in the sea anemone Nematostella vectensis. Using single cell RNA sequencing and imaging approaches, we reveal two unique cell types in the Nematostella apical sensory organ, GABAergic sensory cells and a putative non-sensory support cell population. Further, we identify the paired-like (PRD) homeodomain gene prd146 as a specific sensory cell marker and show that Prd146+ sensory cells become post-mitotic after gastrulation. Genetic loss of function approaches show that Prd146 is essential for apical sensory organ development. Using a candidate gene knockdown approach, we place prd146 downstream of FGF signaling in the apical sensory organ gene regulatory network. Further, we demonstrate that an aboral FGF activity gradient coordinately regulates the specification of both sensory and support cells. Collectively, these experiments define the genetic basis for apical sensory organ development in a non-bilaterian animal and reveal an unanticipated degree of complexity in a prototypic sensory structure.


Asunto(s)
Anémonas de Mar , Animales , Anémonas de Mar/genética , Sistema Nervioso , Gastrulación/genética , Genes Homeobox
3.
Nat Chem Biol ; 20(4): 473-483, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37957272

RESUMEN

The rhizosphere is a niche surrounding plant roots, where soluble and volatile molecules mediate signaling between plants and the associated microbiota. The preferred lifestyle of soil microorganisms is in the form of biofilms. However, less is known about whether root volatile organic compounds (rVOCs) can influence soil biofilms beyond the 2-10 mm rhizosphere zone influenced by root exudates. We report that rVOCs shift the microbiome composition and growth dynamics of complex soil biofilms. This signaling is evolutionarily conserved from ferns to higher plants. Methyl jasmonate (MeJA) is a bioactive signal of rVOCs that rapidly triggers both biofilm and microbiome changes. In contrast to the planktonic community, the resulting biofilm community provides ecological benefits to the host from a distance via growth enhancement. Thus, a volatile host defense signal, MeJA, is co-opted for assembling host-beneficial biofilms in the soil microbiota and extending the sphere of host influence in the rhizosphere.


Asunto(s)
Acetatos , Ciclopentanos , Microbiota , Oxilipinas , Suelo , Raíces de Plantas , Microbiología del Suelo , Rizosfera , Biopelículas
4.
Nat Commun ; 14(1): 8270, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092765

RESUMEN

There is currently little information about the evolution of gene clusters, genome architectures and karyotypes in early branching animals. Slowly evolving anthozoan cnidarians can be particularly informative about the evolution of these genome features. Here we report chromosome-level genome assemblies of two related anthozoans, the sea anemones Nematostella vectensis and Scolanthus callimorphus. We find a robust set of 15 chromosomes with a clear one-to-one correspondence between the two species. Both genomes show chromosomal conservation, allowing us to reconstruct ancestral cnidarian and metazoan chromosomal blocks, consisting of at least 19 and 16 ancestral linkage groups, respectively. We show that, in contrast to Bilateria, the Hox and NK clusters of investigated cnidarians are largely disintegrated, despite the presence of staggered hox/gbx expression in Nematostella. This loss of microsynteny conservation may be facilitated by shorter distances between cis-regulatory sequences and their cognate transcriptional start sites. We find no clear evidence for topologically associated domains, suggesting fundamental differences in long-range gene regulation compared to vertebrates. These data suggest that large sets of ancestral metazoan genes have been retained in ancestral linkage groups of some extant lineages; yet, higher order gene regulation with associated 3D architecture may have evolved only after the cnidarian-bilaterian split.


Asunto(s)
Anémonas de Mar , Animales , Anémonas de Mar/genética , Filogenia , Sintenía/genética , Regulación de la Expresión Génica , Genoma/genética
5.
ACS Appl Mater Interfaces ; 15(47): 55022-55029, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37967152

RESUMEN

The assembly of nanoparticles on surfaces in defined patterns has long been achieved via template-assisted methods that involve long deposition and drying steps and the need for molds or masks to obtain the desired patterns. Control over deposition of materials on surfaces via laser-directed microbubbles is a nascent technique that holds promise for rapid fabrication of devices down to the micrometer scale. However, the influence of surface chemistry on the resulting assembly using such approaches has so far not been studied. Herein, the printing of layered silicate nanoclays using a laser-directed microbubble was established. Significant differences in the macroscale structure of the printed patterns were observed for hydrophilic, pristine layered silicates compared to hydrophobic, modified layered silicates, which provided the first example of how the surface chemistry of such nanoscale objects results in changes in assembly with this approach. Furthermore, the ability of layered silicates to adsorb molecules at the interface was retained, which allowed the fabrication of proof-of-concept sensors based on Förster resonance energy transfer (FRET) from quantum dots embedded in the assemblies to bound dye molecules. The detection limit for Rhodamine 800 sensing via FRET was found to be on the order of 10-12 M, suggesting signal enhancement due to favorable interactions between the dye and nanoclay. This work sets the stage for future advances in the control of hierarchical assembly of nanoparticles by modification of surface chemistry while also demonstrating a quick and versatile approach to achieve ultrasensitive molecular sensors.

6.
J Phys Chem B ; 127(37): 8066-8073, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37672482

RESUMEN

Molecular dynamics simulations can provide the means to visualize and understand the role of intermolecular interactions in the mechanisms involved in molecular aggregation. Along these lines, simulations can allow the study of how surface chemical modifications can influence nanomaterial assembly at the molecular level. Layered silicate clays have been of significant interest for some time, particularly with regard to their use in organic/inorganic nanocomposites. However, despite numerous reports on the covalent linkage of organic moieties via silanol condensation, the theoretical understanding of these systems has heretofore been limited to noncovalent interactions, specifically ionic interactions at the charged basal surfaces. Herein, a model for edge-functionalized layered aluminosilicate clay, based on the siloxane linkage, is presented. In addition to reproducing experimentally observed degrees of molecular aggregation of clay-linked perylene diimide derivatives with different terminal functional groups as a function of solvent composition, a molecular-level understanding of the role of van der Waals interactions and hydrogen bonding of the different end-groups on the aggregation state in different water/N,N-dimethylformamide mixtures is obtained. The reported model provides a means to simulate organic moieties covalently bound to the layered silicate edge, which will enable future simulations of nanocomposites and organic/inorganic hybrids based on this system.

7.
Nano Lett ; 23(14): 6308-6314, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37074355

RESUMEN

MXenes represent a novel class of 2D materials with unique properties and have great potential for diverse applications in sensing and electronics; however, their directed assembly at interfaces has not yet been achieved. Herein, the plasmonic heating of MXenes was exploited to achieve the controlled deposition of MXene assemblies via a laser-directed microbubble. The influence of various factors such as solvent composition, substrate surface chemistry, MXene concentration, and laser fluence was investigated, establishing the optimal conditions for rapid patterning with good fidelity. Printed MXene assemblies showed good electrical conductivity and plasmonic sensing capabilities and were able to meet or exceed the state of the art without additional postprocessing steps. This represents the first study of a directed approach for microfabrication using MXenes and lays the foundation for future work in optically directed assembly of MXenes and MXene-based nanocomposites at interfaces toward sensors and devices.

8.
Sci Total Environ ; 875: 162611, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36871716

RESUMEN

Wastewater surveillance (WWS) has been globally recognised to be a useful tool in quantifying SARS-CoV-2 RNA at the community and residential levels without biases associated with case-reporting. The emergence of variants of concern (VOCs) have given rise to an unprecedented number of infections even though populations are increasingly vaccinated. This is because VOCs have been reported to possess higher transmissibility and can evade host immune responses. The B.1.1.529 lineage (Omicron) has severely disrupted global plans to return to normalcy. In this study, we developed an allele-specific (AS) RT-qPCR assay which simultaneously targets the stretch of deletions and mutations in the spike protein from position 24-27 for quantitative detection of Omicron BA.2. Together with previous assays that detect mutations associated with Omicron BA.1 (deletion at position 69 and 70) and all Omicron (mutation at position 493 and 498), we report the validation and time series of these assays from September 2021 to May 2022 using influent samples from two wastewater treatment plants and across four University campus sites in Singapore. Viral RNA concentrations at the treatment plants corroborate with locally reported clinical cases, AS RT-qPCR assays revealed co-incidence of Omicron BA.1 and BA.2 on 12 January 2022, almost two months after initial BA.1 detection in South Africa and Botswana. BA.2 became the dominant variant by the end of January 2022 and completely displaced BA.1 by mid-March 2022. University campus sites were similarly positive for BA.1 and/or BA.2 in the same week as first detection at the treatment plants, where BA.2 became rapidly established as the dominant lineage within three weeks. These results corroborate clinical incidence of the Omicron lineages in Singapore and indicate minimal silent circulation prior to January 2022. The subsequent simultaneous spread of both variant lineages followed strategic relaxation of safe management measures upon meeting nationwide vaccination goals.


Asunto(s)
COVID-19 , Humanos , Incidencia , ARN Viral , SARS-CoV-2 , Singapur , Universidades , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
9.
Front Artif Intell ; 6: 1116870, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36925616

RESUMEN

The brain is arguably the most powerful computation system known. It is extremely efficient in processing large amounts of information and can discern signals from noise, adapt, and filter faulty information all while running on only 20 watts of power. The human brain's processing efficiency, progressive learning, and plasticity are unmatched by any computer system. Recent advances in stem cell technology have elevated the field of cell culture to higher levels of complexity, such as the development of three-dimensional (3D) brain organoids that recapitulate human brain functionality better than traditional monolayer cell systems. Organoid Intelligence (OI) aims to harness the innate biological capabilities of brain organoids for biocomputing and synthetic intelligence by interfacing them with computer technology. With the latest strides in stem cell technology, bioengineering, and machine learning, we can explore the ability of brain organoids to compute, and store given information (input), execute a task (output), and study how this affects the structural and functional connections in the organoids themselves. Furthermore, understanding how learning generates and changes patterns of connectivity in organoids can shed light on the early stages of cognition in the human brain. Investigating and understanding these concepts is an enormous, multidisciplinary endeavor that necessitates the engagement of both the scientific community and the public. Thus, on Feb 22-24 of 2022, the Johns Hopkins University held the first Organoid Intelligence Workshop to form an OI Community and to lay out the groundwork for the establishment of OI as a new scientific discipline. The potential of OI to revolutionize computing, neurological research, and drug development was discussed, along with a vision and roadmap for its development over the coming decade.

10.
J Colloid Interface Sci ; 629(Pt B): 300-306, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36155925

RESUMEN

The control over intermolecular interactions between chromophores at nanomaterial interfaces is important for sensing and light-harvesting applications. To that aim, inorganic nanoparticles with anisotropic shape and surface chemistry can serve as useful supports for organic modification. Herein, novel asymmetric perylene diimides with aspartic acid and oleyl terminal groups were grafted to the edges of the layered silicate clay Laponite, a water-dispersible discoidal nanoparticle. The photophysical properties and solvent-dependent self-assembly of the nanoclay-grafted perylenes were investigated, revealing that the polarity of the terminating ligand dictates the aggregation behavior in aqueous solution, where increased water content generally led to the formation of perylene H-aggregates. The anionic basal surface of the nanoclay provided a binding site for a cationic fluorophore, leading to energy transfer from the face-bound donor to the edge-bound perylene acceptor. This study encourages further research on the use of functional ligands for the formation of organic-inorganic hybrids, particularly where inorganic template particles with specific surface chemistry can be exploited to study intermolecular interactions. Overall, these findings should advance further design and implementation of novel semiconducting ligands towards inorganic-organic hybrids, with potential applications in sensing and energy harvesting.

11.
Prehosp Emerg Care ; 27(4): 385-397, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36190493

RESUMEN

OBJECTIVE: Emergency medical services (EMS) workforce demographics in the United States do not reflect the diversity of the population served. Despite some efforts by professional organizations to create a more representative workforce, little has changed in the last decade. This scoping review aims to summarize existing literature on the demographic composition, recruitment, retention, and workplace experience of underrepresented groups within EMS. METHODS: Peer-reviewed studies were obtained from a search of PubMed, CINAHL, Web of Science, ProQuest Thesis and Dissertations, and non-peer-reviewed ("gray") literature from 1960 to present. Abstracts and included full-text articles were screened by two independent reviewers trained on inclusion/exclusion criteria. Studies were included if they pertained to the demographics, training, hiring, retention, promotion, compensation, or workplace experience of underrepresented groups in United States EMS by race, ethnicity, sexual orientation, or gender. Studies of non-EMS fire department activities were excluded. Disputes were resolved by two authors. A single reviewer screened the gray literature. Data extraction was performed using a standardized electronic form. Results were summarized qualitatively. RESULTS: We identified 87 relevant full-text articles from the peer-reviewed literature and 250 items of gray literature. Primary themes emerging from peer-reviewed literature included workplace experience (n = 48), demographics (n = 12), workforce entry and exit (n = 8), education and testing (n = 7), compensation and benefits (n = 5), and leadership, mentorship, and promotion (n = 4). Most articles focused on sex/gender comparisons (65/87, 75%), followed by race/ethnicity comparisons (42/87, 48%). Few articles examined sexual orientation (3/87, 3%). One study focused on telecommunicators and three included EMS physicians. Most studies (n = 60, 69%) were published in the last decade. In the gray literature, media articles (216/250, 86%) demonstrated significant industry discourse surrounding these primary themes. CONCLUSIONS: Existing EMS workforce research demonstrates continued underrepresentation of women and nonwhite personnel. Additionally, these studies raise concerns for pervasive negative workplace experiences including sexual harassment and factors that negatively affect recruitment and retention, including bias in candidate testing, a gender pay gap, and unequal promotion opportunities. Additional research is needed to elucidate recruitment and retention program efficacy, the demographic composition of EMS leadership, and the prevalence of racial harassment and discrimination in this workforce.


Asunto(s)
Servicios Médicos de Urgencia , Humanos , Masculino , Femenino , Estados Unidos , Diversidad, Equidad e Inclusión , Recursos Humanos , Etnicidad , Lugar de Trabajo
12.
Front Aging Neurosci ; 14: 1056507, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36533182

RESUMEN

Much of the early research into AD relies on a neuron-centric view of the brain, however, evidence of multiple altered cellular interactions between glial cells and the vasculature early in AD has been demonstrated. As such, alterations in astrocyte function are widely recognized a contributing factor in the pathogenesis of AD. The processes by which astrocytes may be involved in AD make them an interesting target for therapeutic intervention, but in order for this to be most effective, there is a need for the specific mechanisms involving astrocyte dysfunction to be investigated. "α disintegrin and metalloproteinase" 10 (ADAM10) is capable of proteolytic cleavage of the amyloid precursor protein which prevents amyloid-ß generation. As such ADAM10 has been identified as an interesting enzyme in AD pathology. ADAM10 is also known to play a role in a significant number of cellular processes, most notable in notch signaling and in inflammatory processes. There is a growing research base for the involvement of ADAM10 in regulating astrocytic function, primarily from an immune perspective. This review aims to bring together available evidence for ADAM10 activity in astrocytes, and how this relates to AD pathology.

13.
ACS Appl Mater Interfaces ; 14(46): 51921-51930, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36355751

RESUMEN

The steady release of anthropogenic toxins into the biosphere is compromising water security globally. Herein, CoAl layered double hydroxide, a clay-like layered material with a cationic surface charge, was organically modified and used to template the growth of Bi2MoO6. The resulting nanohybrid selectively removed the anionic dye methyl orange from aqueous solution and showed an enhancement of greater than 300% in the maximum adsorptivity (1.95 mmol/g) compared to modified CoAl layered double hydroxide (0.42 mmol/g). Interestingly, the observed improvement in adsorption occurs without any significant increase in the surface area of the hybrids. Furthermore, these hybrids exhibit increased broadband visible light absorption, and their photoactivity is slightly improved compared to CoAl layered double hydroxide. This study demonstrates that composites of clay-like materials with Aurivillius oxides are promising sorbent materials for water decontamination and photocatalytic antifouling membranes and shows that the synthetic strategy that was first established with an anionic layered silicate nanoclay can be generalized to other ionic layered materials.

14.
Front Cell Neurosci ; 16: 905285, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090792

RESUMEN

Changes to sensory experience result in plasticity of synapses in the cortex. This experience-dependent plasticity (EDP) is a fundamental property of the brain. Yet, while much is known about neuronal roles in EDP, very little is known about the role of astrocytes. To address this issue, we used the well-described mouse whiskers-to-barrel cortex system, which expresses a number of forms of EDP. We found that all-whisker deprivation induced characteristic experience-dependent Hebbian depression (EDHD) followed by homeostatic upregulation in L2/3 barrel cortex of wild type mice. However, these changes were not seen in mutant animals (IP3R2-/-) that lack the astrocyte-expressed IP3 receptor subtype. A separate paradigm, the single-whisker experience, induced potentiation of whisker-induced response in both wild-type (WT) mice and IP3R2-/- mice. Recordings in ex vivo barrel cortex slices reflected the in vivo results so that long-term depression (LTD) could not be elicited in slices from IP3R2-/- mice, but long-term potentiation (LTP) could. Interestingly, 1 Hz stimulation inducing LTD in WT paradoxically resulted in NMDAR-dependent LTP in slices from IP3R2-/- animals. The LTD to LTP switch was mimicked by acute buffering astrocytic [Ca2+] i in WT slices. Both WT LTD and IP3R2-/- 1 Hz LTP were mediated by non-ionotropic NMDAR signaling, but only WT LTD was P38 MAPK dependent, indicating an underlying mechanistic switch. These results demonstrate a critical role for astrocytic [Ca2+] i in several EDP mechanisms in neocortex.

15.
J Am Chem Soc ; 144(21): 9363-9371, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35588530

RESUMEN

Nearly every animal species on Earth contains a unique polyketide synthase (PKS) encoded in its genome, yet no animal-clade PKS has been biochemically characterized, and even the chemical products of these ubiquitous enzymes are known in only a few cases. The earliest animal genome-encoded PKS gene to be identified was SpPks1 from sea urchins. Previous genetic knockdown experiments implicated SpPks1 in synthesis of the sea urchin pigment echinochrome. Here, we express and purify SpPks1, performing biochemical experiments to demonstrate that the sea urchin protein is responsible for the synthesis of 2-acetyl-1,3,6,8-tetrahydroxynaphthalene (ATHN). Since ATHN is a plausible precursor of echinochromes, this result defines a biosynthetic pathway to the ubiquitous echinoderm pigments and rewrites the previous hypothesis for echinochrome biosynthesis. Truncation experiments showed that, unlike other type I iterative PKSs so far characterized, SpPks1 produces the naphthalene core using solely ketoacylsynthase (KS), acyltransferase, and acyl carrier protein domains, delineating a unique class of animal nonreducing aromatic PKSs (aPKSs). A series of amino acids in the KS domain define the family and are likely crucial in cyclization activity. Phylogenetic analyses indicate that SpPks1 and its homologs are widespread in echinoderms and their closest relatives, the acorn worms, reinforcing their fundamental importance to echinoderm biology. While the animal microbiome is known to produce aromatic polyketides, this work provides biochemical evidence that animals themselves also harbor ancient, convergent, dedicated pathways to carbocyclic aromatic polyketides. More fundamentally, biochemical analysis of SpPks1 begins to define the vast and unexplored biosynthetic space of the ubiquitous animal PKS family.


Asunto(s)
Sintasas Poliquetidas , Policétidos , Animales , Naftalenos , Filogenia , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo , Erizos de Mar/metabolismo
16.
Methods Mol Biol ; 2450: 437-465, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359322

RESUMEN

With a surprisingly complex genome and an ever-expanding genetic toolkit, the sea anemone Nematostella vectensis has become a powerful model system for the study of both development and whole-body regeneration. Here we provide the most current protocols for short-hairpin RNA (shRNA )-mediated gene knockdown and CRISPR/Cas9-targeted mutagenesis in this system. We further show that a simple Klenow reaction followed by in vitro transcription allows for the production of gene-specific shRNAs and single guide RNAs (sgRNAs) in a fast, affordable, and readily scalable manner. Together, shRNA knockdown and CRISPR/Cas9-targeted mutagenesis allow for rapid screens of gene function as well as the production of stable mutant lines that enable functional genetic analysis throughout the Nematostella life cycle.


Asunto(s)
Anémonas de Mar , Animales , Técnicas de Silenciamiento del Gen , Genoma , Mutagénesis , ARN Interferente Pequeño/genética , Anémonas de Mar/genética
17.
Artículo en Inglés | MEDLINE | ID: mdl-35015519

RESUMEN

Groundwater is being depleted globally at an average rate of more than one meter per year, during a period when more than a quarter of the human population has no access to potable water. Aside from overexploitation, freshwater security is also threatened by climate change and chemical pollution. The contamination of surface and groundwater by industrial substances is also undermining the vitality of ecosystems. It was previously shown that {100}-faceted Bi2MoO6-Laponite hybrids effectively bind and photodegrade molecular species, aiding in the decontamination of water. In this study, the encapsulation of Bi2MoO6-Laponite particles with the polymers butyl acrylate and styrene further enhanced adsorption of methylene blue by 31.4%, with a specific adsorption capacity of 192 µmol/g. The polymer-particle composites were deposited to form membranes and their efficacies in water filtration and photodegradation were examined. Among the different surface modifications examined, the highest dye sorption was obtained by butyl acrylate and styrene (3:2) with a 5 mol % cross-linker. This study provides a method for enhancing the molecular adsorption of composite particles used in membranes capable of multiple cycles of adsorption and photodegradation, advancing the application of such systems to water filtration.

18.
Microb Ecol ; 84(3): 730-745, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34633491

RESUMEN

Cholera has been endemic to the Ganges Delta for centuries. Although the causative agent, Vibrio cholerae, is autochthonous to coastal and brackish water, cholera occurs continually in Dhaka, the inland capital city of Bangladesh which is surrounded by fresh water. Despite the persistence of this problem, little is known about the environmental abundance and distribution of lineages of V. cholerae, the most important being the pandemic generating (PG) lineage consisting mostly of serogroup O1 strains. To understand spatial and temporal dynamics of PG lineage and other lineages belonging to the V. cholerae species in surface water in and around Dhaka City, we used qPCR and high-throughput amplicon sequencing. Seven different freshwater sites across Dhaka were investigated for six consecutive months, and physiochemical parameters were measured in situ. Total abundance of V. cholerae was found to be relatively stable throughout the 6-month sampling period, with 2 × 105 to 4 × 105 genome copies/L at six sites and around 5 × 105 genome copies/L at the site located in the most densely populated part of Dhaka City. PG O1 V. cholerae was present in high abundance during the entire sampling period and composed between 24 and 92% of the total V. cholerae population, only showing occasional but sudden reductions in abundance. In instances where PG O1 lost its dominance, other lineages underwent a rapid expansion while the size of the total V. cholerae population remained almost unchanged. Intraspecies richness of V. cholerae was positively correlated with salinity, conductivity, and total dissolved solids (TDS), while it was negatively correlated with dissolved oxygen (DO) concentration in water. Interestingly, negative correlation was observed specifically between PG O1 and salinity, even though the changes in this variable were minor (0-0.8 ppt). Observations in this study suggest that at the subspecies level, population composition of naturally occurring V. cholerae can be influenced by fluctuations in environmental factors, which can lead to altered competition dynamics among the lineages.


Asunto(s)
Cólera , Vibrio cholerae , Humanos , Vibrio cholerae/genética , Cólera/epidemiología , Bangladesh/epidemiología , Agua
19.
Bioact Mater ; 9: 358-372, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34820576

RESUMEN

To reflect human development, it is critical to create a substrate that can support long-term cell survival, differentiation, and maturation. Hydrogels are promising materials for 3D cultures. However, a bulk structure consisting of dense polymer networks often leads to suboptimal microenvironments that impedes nutrient exchange and cell-to-cell interaction. Herein, granular hydrogel-based scaffolds were used to support 3D human induced pluripotent stem cell (hiPSC)-derived neural networks. A custom designed 3D printed toolset was developed to extrude hyaluronic acid hydrogel through a porous nylon fabric to generate hydrogel granules. Cells and hydrogel granules were combined using a weaker secondary gelation step, forming self-supporting cell laden scaffolds. At three and seven days, granular scaffolds supported higher cell viability compared to bulk hydrogels, whereas granular scaffolds supported more neurite bearing cells and longer neurite extensions (65.52 ± 11.59 µm) after seven days compared to bulk hydrogels (22.90 ± 4.70 µm). Long-term (three-month) cultures of clinically relevant hiPSC-derived neural cells in granular hydrogels supported well established neuronal and astrocytic colonies and a high level of neurite extension both inside and beyond the scaffold. This approach is significant as it provides a simple, rapid and efficient way to achieve a tissue-relevant granular structure within hydrogel cultures.

20.
Emerg Top Life Sci ; 5(4): 507-517, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34524411

RESUMEN

With the increasing prevalence of neurodegenerative diseases, improved models of the central nervous system (CNS) will improve our understanding of neurophysiology and pathogenesis, whilst enabling exploration of novel therapeutics. Studies of brain physiology have largely been carried out using in vivo models, ex vivo brain slices or primary cell culture from rodents. Whilst these models have provided great insight into complex interactions between brain cell types, key differences remain between human and rodent brains, such as degree of cortical complexity. Unfortunately, comparative models of human brain tissue are lacking. The development of induced Pluripotent Stem Cells (iPSCs) has accelerated advancement within the field of in vitro tissue modelling. However, despite generating accurate cellular representations of cortical development and disease, two-dimensional (2D) iPSC-derived cultures lack an entire dimension of environmental information on structure, migration, polarity, neuronal circuitry and spatiotemporal organisation of cells. As such, researchers look to tissue engineering in order to develop advanced biomaterials and culture systems capable of providing necessary cues for guiding cell fates, to construct in vitro model systems with increased biological relevance. This review highlights experimental methods for engineering of in vitro culture systems to recapitulate the complexity of the CNS with consideration given to previously unexploited biophysical cues within the cellular microenvironment.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ingeniería de Tejidos , Diferenciación Celular , Microambiente Celular , Sistema Nervioso Central/patología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...